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ABSTRACT

This paper describes GIL, the graphical tutor for LISP programming, according to criteria
that are emerging from the field of intelligent tutoring. We begin with a brief overview of GIL’s
explanatory and visual characteristics, then discuss ways in which the system reduces and
obviates many difficulties in learning to program. Finally, GIL’s present and future performance
is considered with respect to several problematic issues in the design of intelligent tutors.

INTRODUCTION

Over the past few years, various research groups have been developing intelligent tutoring
systems, including several designed to teach computer programming (e.g., Anderson & Reiser,
1985; Bonar & Cunningham, 1988). Even more recently, attention has been focused on just what
makes such tutoring technology successful (Collins, in press), particularly given the considerable
difficulties inherent in learning to program (du Boulay, 1988). In this paper, we apply some of
these criteria to GIL, our intelligent tutor for generating LISP programs.

GIL: GRAPHICAL INSTRUCTION IN LISP

Since the system is described more extensively elsewhere (Reiser, Kimberg, Lovett, &
Ranney, in press), this section represents only a very quick overview of GIL’s essential features.
Using a problem solver, an explainer, a response manager, and a graphical interface, GIL tutors
students in writing simple LISP programs. In doing so, the system (1) explains its own reasoning
via a set of plans and problem solving rules and (2) employs a visual representation that
facilitates students’ program generation.

Problem solving rules that yield generative explanations

GIL constructs explanatory feedback and hints directly from the content of the problem
solving rules -- rules that trace the student’s behavior as the solution progresses. Such
explanations are hence generative, in contrast with other rule-based programming tutors that use
"canned" English text that is handcrafted for each new S$ituation (e.g., Anderson, Boyle, &
Reiser, 1985). This is possible because GIL’s problem solver makes casual knowledge about
useful programming operations explicit.

To guide the student along novel chains of reasoning, GIL’s problem solver includes rules
and plans that understand how each LISP step transforms the data; the system not only encodes
the results of sequences of operations, it can also communicate the desirable aspects of such
sequences. This knowledge is represented as properties of each step’s input and output, allowing
the problem solver to explain why a proposed step is effective in a given situation.
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GIL’s explainer uses these same plans and rules to construct explanations that respond to
either poor strategies, legal errors, or requests for hints. When a student solicits a hint, GIL finds
a rule that best continues the student’s progress. The tutor then proposes the problem solving
rule’s associated step, explaining its choice in terms of the properties of the step’s input and
output. These properties are also used when GIL explains discrepancies between a near-miss
error and a comparable rule from the problem solver. Thus, GIL does not need a catalog of
buggy rules, as explanations for errors are dynamically constructed via such comparisons. Two
basic sorts of errors are explained: legal errors, in which a step’s input and function do not result
in the indicated output, and stfategic errors, in which a legal step is not useful. Figure 1
illustrates part of GIL’s explanation of a legal error.
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Fig. 1. A forward-working legal (output) error, with one level of explanation and three choices.

A Graphical Representation of Programming

With its graphical interface, students construct a program in GIL by connecting objects that
represent programming constructs. The resulting graph stands in sharp contrast with standard,
nested, text-based, LISP functions. Each step involves selecting a LISP function from the menu,
then specifying its input and output by typing or clicking. The graph makes each of the
program’s intermediate products explicit, as the student specifies how the output for one function
becomes the input for another. Thus, students indicate chains of transformations, rather than a
mere sequence of operations. Intermediate products allow for GIL’s stepwise character, and
tutoring is provided based on this unit of analysis. Figure 1 shows two steps for the problem
getends (in which the goal is to make a list from the first and last elements of an input list). The
correct list step is a backward step that works from the goal, (a d), in black, toward the input, (a b
¢ d), in white. The incorrect last step is a forward step that creates the intermediate product d. A
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complete program would eventually link the subgoals a and d to the original input, (a b ¢ d).

The graph uses a structure that mirrors the planning of a program, with reasoning chains
represented as branches that link the original input and the ultimate goal. GIL’s explicit
intermediate products help students understand the developing algorithm. Most importantly,
perhaps, the visual interface supports multidirectional planning and problem solving. Students
can work both forward and backward, and can alternate laterally from one branch to another (i.e.,
rightward or leftward). GIL’s problem solver contains rules relevant to all of these options,
providing a very powerful basis for the explanations needed for hints and error feedback.

HOW DOES GIL REDUCE PROGRAMMING DIFFICULTIES?

In describing the difficulties involved in learning computer programming, du Boulay (1988)
provides a partial, interrelated, list of a programmer’s activities. In designing GIL, we have
addressed about five of these eight activities. As du Boulay casts an appropriately wide net, let
us first make it clear what activities GIL does not tutor. Since GIL provides students with well-
specified problems, it does not facilitate the establishment of a problem, i.e., problem finding and
the initial stages of problem representation. Furthermore,  since GIL’s present curriculum is
geared toward naive programmers and simple problems, professional activities like documenting,
maintaining, and extending existing code are not addressed. Now, let us consider how the tutor
reduces some of the more salient difficulties of the other programming activities.

The program as process

Both Collins (in press) and du Boulay (1988) note that it is difficult to generate solutions
that represent the product, rather than the process, of problem solving. In this respect, standard
text-based programs are much like two-column proofs in geometry (Anderson et al., 1985); they
hardly provide a sense of the reasoning that generates them. Students who similarly believe that
complete programs are usually generated line by line are mistaken, and this misconception was
the primary motive behind GIL’s graphical nature: to change the programming environment of
LISP such that the product and the process are more congruent (cf. Collins & Brown, 1988).
Such changes have several desirable outcomes. The graphical structure makes flow of control
much more explicit, the intermediate products reduce the mental load i'nvolving the results of
data transformations, and the use of concrete input eliminates occasional textual confusions
between variables and functions. Thus, GIL makes subjects’ tacit reasoning more visible.

To some -extent, GIL’s direct-manipulation character makes it a different language than
LISP. However, like Bonar and Cunningham’s Bridge programming tutor (1988), GIL can be
viewed as an intermediate representation between natural human planning and a text-based
programming language (du Boulay, 1988). The spatial reification of such planning processes
aids a student in reflecting about a problem’s solution, which is easier to construct when the
communication medium is congruent with the individual’s reasoning. Thus, like Anderson et
al.’s (1985) geometry tutor, GIL abstracts the problem solving of programming into a cogent
problem space. When combined with GIL’s capacity for self-explanation and multidirectional
problem solving, the tutor serves as an environment in which the apprentice programmer can
develop some of the expert’s skills (cf. Collins, in press).

Problem decomposition

A theme present in several of du Boulay’s programming activities (e.g., problem
comprehension, method specification, coding and compiling, etc.) is that of decomposition.
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Since breaking a problem into its parts is central to productive programming, difficulties with
this skill are quite serious. GIL aids students’ problem decomposition in several ways: First, the
interface’s explicit visual constructs make decomposition easier, as the students can always see
the current problem state; the salient function icons remind one of what operations are available,
while the concrete data elements help suggest which transformations will be necessary to achieve
the goal. Next, GIL’s explainer provides hints that are based on plans, matching problem solving
rules, and a knowledge base that explicitly represents compositional considerations in its goal
structure. In fact, GIL often recommends decompositional steps when students ask for hints.
Figure 2 shows such a situation at the beginning of problem getends, in which two levels of
information have been requested. Note that the first level offers a rather general specification of
the decompositional method; the second level describes an appropriate coding, concretely
translating the first level into a specific backward step, making explicit a useful function and its
input. (The suggested step is actually the backward step illustrated in Figure 1.)
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Fig. 2. Two decompositional hints provided at the start of problem gerends.

Interpreting output and debugging

It is generally considered rather difficult to comprehend and debug a complete program (du
Boulay, 1988). GIL’s environment obviates this difficulty by imposing its stepwise program
development, which provides for a kind of ad hoc debugging (in contrast to the post hoc analyses
of Johnson & Soloway, 1987). However, the system’s explanations can also provide a global
perspective, including multi-step plans and feedback that suggest alternative approaches. In
general, the stepwise constraint means that GIL’s output is quite interpretable. The two levels of
error feedback are usually easily understood in the local context, and problematic constructs are
visually highlighted by placing gray boxes around them (as in Figure 1 above). Thus, GIL
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severely limits the potential for student floundering due to uninterpretable program behavior.
There are no hard-to-parse "compiler error messages,” due to the tutor’s model-tracing and
explainer capabilities. There are also few "run-time surprises" (du Boulay, 1988) since each
"run” involves a single function, corresponding to a single problem solving step. Both legal and
strategic errors are quickly caught, so thrashing, in which students move about a problem space
without reducing the distance to the goal, is minimized. Although not as authoritarian as the
CMU LISP Tutor (Reiser, Anderson, & Farrell, 1985), GIL’s suppression of such floundering is
based on a similar instructional philosophy (and one that human tutors generally share) -- that
help should be provided promptly at critical moments.

Different perspectives and tutor flexibility

Both Collins (in press) and du Boulay (1988) point out that another difficult component of
learning involves the need to consider alternative paths to a solution. In programming, both
student and tutor often neglect this facet of reflection, focusing only on the development of a
single working program. GIL’s reasoning allows alternative solution paths in a variety of ways,
and the system can be conﬁgureq to provide even more support for students’ reflective processes.

First, as a byproduct of its generative explanatory character, GIL can offer as many
perspectives as there are matching problem solving rules (not to mention perspectives that result
when matched rules are steps in multi-step plans). Since the tutor is multidirectional, even
simple problems may provide a handful of loci for the next step, with several possible operations
at each locus. Furthermore, as GIL is capable of generating all subsequent solution paths from
any legal problem state, it is a simple extension of the current system to include an intervention
that explicitly contrasts the student’s solution with more elegant or efficient variants. This facility
would complement current efforts to get students to reflect on alternative solutions.

Because of GIL’s multidirectional character, some legal steps are ambiguous with respect to
why they were taken. The system must then maintain multiple perspectives regarding the active
goals that such a step invokes, pending disambiguating steps. This makes subsequent error
feedback more tricky, as sometimes it is unclear as to which goal a subject was trying to achieve
by taking the flawed step -- a difficulty common to some other formal domains, like geometry.

GIL also has enough flexibility to provide some backtracking help when students discover a
new plan. In particular, when students try to implement the new plan before eliminating vestiges
of the old plan, the tutor lays out a set of appropriate options. Because geometry proofs are not
(temporally) interpreted in the same way that computer programs are, unlike the Geometry
Tutor, GIL does not permit dead ends in its graph (cf. Anderson et al., 1985). Figure 3 illustrates
the options provided: The student can either continue along the previously committed path or
delete that path in order to pursue the new one. (Note that students often change strategies, delete
partial solutions, and implement the new code without ever seeing an error message.)

Collins (in press) suggests that computer coaches can offer "new eyeglasses" for students,
providing new terms and concepts about problem solving. GIL offers new perspectives in
several ways, with many of them driven by the interaction between the system’s interface and
explainer, such that new distinctions are both graphically illustrated and textually described to
students. Among these distinctions are backward/forward and leftward/rightward problem
solving, as well as the differences between data and functions. The result is a tutor that can offer
interventions based upon a number of levels and types of knowledge (cf. du Boulay, 1988); GIL
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can provide several different types of feedback that deal with the interaction of a program’s
topography and its conceptual structure.
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Fig. 3. GIL diagnoses a redundant step, providing two levels of feedback.

Program reliability

A final difficulty in learning to program relates to testing a solution to determine whether
the boundary conditions of its functionality are appropriate. Such testing is presently
unnecessary, since GIL’s problem solver helps students construct solutions that conform to the
constraints laid out in each unambiguous, well-structured, problem statement. In essence, the
system does not accept steps which follow an overly specific plan, even though there is no
library, as proposed by du Boulay (1988), that explicitly recognizes such "buggy plans.” (For
instance, the library would recognize that the LISP code (cons (first some-list) (rest (rest (rest
(some-list))))) is only functional for getends’ problem statement when "some-list" has four
elements.) This sort of catalog would allow GIL more sophistication in explaining why a
particular step leads to a less general solution. We are concerned, however, that if such buggy
plans begin to approximate the buggy rules that are characteristic of the CMU LISP Tutor, a
proliferation of such plans may jeopardize GIL’s overall, rule-driven, generative nature.

We are now developing a variant of GIL that would have its authoritarian character
dramatically reduced by silencing its explainer at times -- and allowing the student to continue
on after an error has been made. In this way, GIL would become an environment for program
exploration, in which the student could choose to invoke the problem solver and explainer
whenever they were needed to facilitate the individual’s hypothesis testing (Collins, in press). In
fact, while GIL presently allows only the creation of general solutions, it can readily be modified
to permit more program testing: At present, the tutor focuses on concrete examples, rather than
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programs that employ input variables; we plan to change GIL’s interface to allow students to
vary a program’s input, hence testing its reliability over a range of concrete examples (and
demonstrating that the input can be variable).

POTENTIAL PITFALLS IN TUTORING PROGRAMMING

Intelligent tutoring, and computer-based instruction in general, often suffers by contrast
with human instructors. For instance, du Boulay (1988) notes that expert teachers have a much
greater breadth of knowledge than do intelligent tutoring systems. This will probably be true for
some time. However, the contrast is more striking for programming tutors that employ buggy
rules with canned English and text-based formalisms than for a system like GIL, with its
generative explanations and graphical interface. On one hand, generative explanations rely on
much the same information that human experts use when describing a situation. On the other
hand, the tutor’s multidirectional environment offers so much freedom that an expert human
tutor who watched a student interacting with the graphical interface would probably have as
much difficulty discerning the student’s intentions as GIL does. (This would be especially true
prior to the completion of a step, e.g., before the links between a function and its data are
specified.)

Preliminary results (e.g., Reiser, Ranney, Lovett, & Kimberg, in press), both from students
working with GIL and with human tutors (in a standard, text-based environment), support this
hypothesis of comparable diagnosis. For instance, students working with GIL take about as much
time as human-tutored LISP students do when covering comparable material. Furthermore,
analyses of error rates and verbal protocols indicate that both GIL and human tutors intervene
often.

Another contrast by which intelligent tutors suffer relates to the pruning of explanations.
Human tutors can cut right to the heart of an issue, tailoring their feedback to focus on a critical
aspect (du Boulay, 1988). The result is often a few cogent syllables, e.g., "That’s not a list."
Although some of this advantage is due to the broader communication bandwidth enjoyed by
human tutors, much of it is driven by a strong understanding of redundancy. GIL incorporates
some of this knowledge by representing entailment relations among, clauses, such that its
explainer can reason about them and avoid redundancies when comparing a flawed step to a
desirable step. For example, this feature eliminates the redundant second clause of the following
error feedback: "This output is not a list, and it does not have the proper first element." In the
future, we plan to further focus such explanations by using a subject’s individualized student
model to constrain GIL’s feedback and hints.

A final pitfall for intelligent tutoring systems concerns the start-up costs of their usage. As
du Boulay (1988) justly warns, tutors can easily become unwieldy by providing too much
flexibility and too many features. There is always the danger of diminishing returns, in which it
could take as much time to learn the uses for a rather arbitrary set of windows and icons as the
tutor saves in more expedient learning. Happily, this is not (at least not yer) the case with GIL,
as students are briefed on its interface with a ten-minute demonstration that yields a much more
dramatic saving in learning time. Whether this will continue to be the case as the GIL
curriculum grows remains to be seen. It it our hope, however, to reduce potential unwieldiness
by activating new features and functions only as they are introduced into that curriculum.
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CONCLUSIONS
GIL is a hybrid system when considered in relation to the classes du Boulay (1988) lays out.
Although primarily a tutor, it has local debugging capabilities and contains a graphical
programming environment that dramatically supports program generation. The product, when
compared to standard LISP, can almost be considered a new programming language, given that
the fundamental representation (i.e., graphical vs. textual) and the unit of analysis (i.e., a chained
step vs. nested function-calls) are so different. Either way, GIL offers much promise as a
programming coach. It has specifically been designed to reduce some of the more difficult
activities of programming, while avoiding some of the pitfalls to which intelligent tutoring
systems often fall prey.
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